
IEEE Network • March/April 2018138 0890-8044/18/$25.00 © 2018 IEEE

Abstract
State-of-the-art microservices have been attract-

ing more attention in recent years. A broad spec-
trum of online interactive applications are now
programmed to service chains on the cloud, seeking
better system scalability and lower operating costs.
Different from the conventional batch jobs, most
of these applications consist of multiple stand-alone
services that communicate with each other. These
step-by-step operations unavoidably introduce high-
er latency to the delay-sensitive chained services.

In this article, we aim at designing an opti-
mization approach for reducing the latency of
chained services. Specifically, presenting the
measurement and analysis of chained services
on Baidu’s cloud platform, our real-world trace
indicates that these chained services are suf-
fering from significantly high latency because
they are mostly handled by different queues on
cloud servers for multiple times. However, such
a unique feature introduces significant challeng-
es to optimize a microservice’s overall queue-
ing delay. To address this problem, we propose
a delay-guaranteed approach to accelerate
the overall queueing of chained services while
obtaining fairness across all the workloads. Our
evaluations on Baidu servers shows that the pro-
posed design can successfully reduce the latency
of chained services by 35 percent with minimal
impact on other workloads.

Introduction
The rapid growth of service chains is changing
the landscape of cloud-based applications. Dif-
ferent stand-alone components are now handled
by cloud servers, providing cost efficient and reli-
able services to Internet users. It is known that
the workloads from service chains are more com-
plex than the traditional non-interactive (or batch)
workloads [1]. Non-interactive workloads are the
workloads that can be processed on only one
specific server and do not need interactions with
other servers (such as scientific computing and
image processing). Being not strictly time-sensi-
tive, these workloads can be scheduled to run
anytime as long as they can be finished before
a soft deadline, while interactive workloads from
service chains are the workloads that have to go
through multiple servers to apply different func-
tions (such as business transactional and complex
gaming control), and these chained services typ-
ically process real-time user requests. However,
the interactions unavoidably introduce addition-

al latency, making the performance for service
chains in urgent need to be ensured.

We then measure the interactive workloads per-
formance on Baidu’s cloud platform. The real-world
traces indicate that interactive workloads are real-
ly suffering from significantly longer latency than
non-interactive workloads. The measured case is
shown in Fig. 1a, where Nuomi is a group buying
application, Waimai is a take-out service, and Ali-
pay is an online payment platform. When a user
clicks an item on Nuomi, the latency is quite short
because this query does not require many inter-
actions among services. However, the story will
be different when this user orders a take-out and
purchases the item. In this case, the request goes
through Nuomi, Waimai, and then Alipay. In other
words, this interactive workload consists of several
highly-dependent operations that have to be pro-
cessed on different servers separately. As shown
in Fig. 1b, there are six procedures for interactive
workloads and only two procedures for non-inter-
active workloads. It is easy to see that such interac-
tive workloads in chained applications will introduce
extra latency to users because these requests will be
handled by different services for multiple times.

Unfortunately, we find that most existing
workload scheduling approaches are designed to
re-schedule [2] and leverage different priorities
[3, 4] on individual queues. In other words, these
optimizations are made on intermediate servers
separately, so the overall latency of interactive
workloads is still unpredictable. To better optimize
the overall latency of chained services, we apply
a latency estimation approach to predict overall
latency and try to accelerate the interactive work-
loads. Furthermore, we design a feedback scheme
to ensure workload fairness and avoid remarkable
degradation of non-interactive workloads. Our
real-world deployments on Baidu indicate that the
proposed Delay-Guarantee (D3G) framework can
successfully reduce the latency of interactive appli-
cations with minimal impact on other workloads.

The main contributions of this article are sum-
marized as follows:
•	 We present a measurement and latency analy-

sis of service chains in Baidu networks and dis-
close the long latency of interactive workloads.

•	 We design the D3G algorithm to accelerate
interactive workloads in a global manner
other than in each independent server, and
leverage a latency estimation algorithm and
a feedback scheme to ensure fairness.

•	 We evaluate our methods on servers in
Baidu networks, and the extensive experi-

Going Fast and Fair: Latency Optimization for Cloud-Based Service Chains
Yuchao Zhang, Ke Xu, Haiyang Wang, Qi Li, Tong Li, and Xuan Cao

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.2017.1700275

Yuchao Zhang is with Beijing University of Posts and Telecommunications; Ke Xu is with Tsinghua University; Haiyang Wang is with the University of Minnesota at
Duluth; Qi Li is with Graduate School at Shenzhen, Tsinghua University; Tong Li is with Huawei; Xuan Cao is with Baidu.

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:06:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2018 139

ment results show that D3G succeeds in
accelerating interactive chained applications
while ensuring workload fairness.

Background
As more applications are deployed on clouds
for better system scalability and lower operat-
ing costs, service chains are developing quickly.
Many studies have shown that latency is particu-
larly problematic when interaction latency occurs
together with network delays [5]. In this section,
we will first introduce the related work about
service chains and interactive applications, and
then present the measurements from a real-world
trace, which motivates this article.

Related Work
To optimize cloud-based applications, many
researchers focused on minimizing latency, which
do advance the state-of-art. We classify this lit-
eratures into two categories. First, some literature
focused on network processing latency. For exam-
ple, Webb et al. [6] proposed a nearest server
assignment to reduce client-server latency. Vik [7]
explored the spanning tree problems in a distributed
interactive application system for latency reduction.
The authors in [8] and [9] introduced game theory
into this topic and modeled the latency problem in
datacenters as a bargaining game. Second, some
research aims at reducing service latency. Web
service is the most related, which is an effective
mechanism for data and service integration on the
Web. Some studies succeeded in dissecting latency
contributors [10], showing that back-office traffic
accounts for a significant fraction of Web transac-
tion latency in terms of requests and responses [11].

The above studies handle different compo-
nents of overall latency, but they ignore the effects
brought by service chains, e.g., the case in Fig. 1.
When service 1 receives an interactive request
(TCP:0) that cannot be served in service 1 (i.e., this
request requires data from services 2 and 3), then
service 1 will make a new TCP connection (TCP:1)
to service 2, and the original connection (TCP:0)
would be hung up. In the same way, service 2 will
make a new TCP connection (TCP:2) to service 3.
When service 2 receives the corresponding results
from service 3, the TCP:2 connection would be
released and the TCP:1 connection recovered.
After service 2 sends the results back to service 1,
TCP:1 connection would be released and the orig-
inal TCP:0 connection recovered. Thus, the inter-
active workloads are suffering from longer latency
due to the interactions among multiple interme-
diate servers. Many researchers investigated the
latency for these applications, and their research
showed that although these applications are quite
delay-sensitive, service performance is greatly
affected by interactions. To address this problem,
some studies suggested that the interactions of dif-
ferent services should be further dissected to better
understand the performance implications [11], and
some researchers have already begun to pay atten-
tion to interaction latency [12].

Our study explores the potential to reduce the
response time for service chains and guarantee the
non-interactive workloads simultaneously. In particular,
we accelerate the interactive workloads by building
a new dedicated queue and trying to adjust resource
allocation among different queues. By leveraging a

feedback scheme, we can bound the influence on
non-interactive workloads. We’ll describe the algorithm
in detail after introducing our motivation below.

Measurement and Motivation
In this section, we conduct measurements in Baidu
networks and disclose the long latency of chained
services. This article was motivated by the goal to
accelerat interactive workloads while not affecting
non-interactive workloads (to ensure fairness).

As the largest Chinese search engine, Baidu
has dozens of applications deployed in its net-
works. These applications cover every corner of
people’s lives, and they can further cooperate
with each other to provide more comprehensive
functions (as shown in the introduction section).

To evaluate the performance of these services,
we measured the workload latency from one serv-
er cluster at Baidu. In particular, we monitor all
the workloads, record the response time of ser-
vice calls, and then calculate the average latency
per minute of both interactive and non-interactive
workloads by analyzing the trace log. We grab
the log of these two kinds of workloads from 0:00
to 24:00 on April 7, 2016, and draw the statisti-
cal figures in Fig. 2. The x-coordinate denotes the
time in one day while the y-coordinate denotes
the service latency in ms. From these results, we
come to the following conclusions:
•	 The average latency of non-interactive work-

loads is about 60 ms to 70 ms, while that of
the interactive workloads is nearly 500 ms,
that is, the interactive workloads are suffer-
ing from seven times longer latency com-
pared to the non-interactive workloads.

•	 Even when the network is not congested
(e.g., during the night), the interactive work-
load latency is still much longer than the
non-interactive workload latency.

•	 When there is a slight burst, for example, at
11:00 am or 16:00 pm, the performance for
interactive workloads is obviously influenced,
making latency even higher.
As we analyzed before, non-interactive work-

loads can be completed in just one instance while
the interactive workloads have to go through differ-

FIGURE 1. The processes of interactive and non-interactive workloads.

(a)

Service 1

Service 2

Service 3

User Request
User 3

User 1

User 3

Non-interactiveInteractiveData flow

User 2

nuomi.com

waimai.baidu.com

alipay.com

(b)

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:06:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2018140

ent servers one after another. To optimize the per-
formance of delay-sensitive interactive workloads,
we should accelerate the processing of these work-
loads, such as assigning higher priorities or allocating
more resources. However, improving interactive
workloads will unavoidably affect non-interactive
workloads because they are sharing the same infra-
structures. Hence a fair optimization scheme should
have the following two characteristics: reduce laten-
cy for delay-sensitive interactive workloads, and
ensure fairness across all workloads (not to degrade
non-interactive workloads severely).

Dynamic Differentiated Service with
Delay-Guarantee

In this section, we study the essence of the laten-
cy gap before introducing the design philosophy
of our approach. According to the philosophy,
we design an algorithm called the Dynamic Dif-
ferentiated service with Delay-Guarantee (D3G),
which reduces the latency of service chains while
ensuring workload fairness.

The Components of Latency
As interactive applications consist of basic func-
tions applied on different servers, those workloads
should go through multiple servers in a specific
order so that the required functions are applied
step by step. Therefore, the interactive workloads
will be queued in servers several times while the
non-interactive workloads will be queued just once.

To be specific, we analyze the latency of inter-
active Ri,j and non-interactive Ri,i workloads. As
interactive workloads travel across multiple servers
and are queued in each one, the final latency is the
sum of the queuing and serving time on each serv-
er. The transfer time among different servers also
contributes to latency. Non-interactive workloads
only go through one particular server with only
one queuing and serving time. Thus, the overall
latency of interactive workloads is much longer
than that of non-interactive workloads (Fig. 2).

Design Philosophy
As the patience of users is limited and they would
abandon the system once latency exceeds their
patience, interactive workload latency is essential
for these delay-sensitive applications. This limit-

ed patience can be formulated as an exponential
function [13]. Considering that one exponential
function is not precise enough to model user
patience, we use a weighted sum of exponential
functions to calculate user patience in the D3G
algorithm. With this expected patience, the sys-
tem would have a leaving rate, rephrased as fol-
lows: when overall latency exceeds user patience,
users will abandon the system, and this leads to
an abandoning rate of waiting queues.

To ensure constant service and prevent
users from abandoning the system, interactive
workloads should be scheduled within user
tolerance. To do so, we do re-scheduling and
resource adjustment in this work. Specifically,
we separate interactive workloads from non-in-
teractive workloads and make them pending in
different queues. We leverage two queues in
each server. Ql represents the queue for non-in-
teractive requests, and Qr represents the queue
for interactive requests. The two queues share
the infrastructure and resources in the same
server. The difficulty in accelerating interactive
workloads is that allocating more resources to
Qr will unavoidably affect the process of Ql.
Thus, how to share the resources on one serv-
er among different workloads becomes a key
concern.

To address this issue, we design D3G, which
can adjust resource allocation among different
kinds of workloads automatically and in real time.
To make D3G more intelligent, we design an esti-
mation algorithm to pre-calculate the processing
time on other servers. Furthermore, we also intro-
duce a feedback scheme to reduce the negative
impact on non-interactive workloads.

D3G Framework
As we described in the previous subsection,
we separate interactive workloads from non-in-
teractive workloads and make them queued
independently. We design a latency estima-
tion algorithm, and once the estimated latency
exceeds user patience, we dynamically adjust the
resource allocation among queues according to a
feedback scheme. Thus, the interactive workloads
will be accelerated in all intermediate servers and
finally enjoy a latency level that is comparable to
the non-interactive workloads.

The framework of D3G is shown in Fig. 3. For
a specific server, it receives interactive workloads
from other servers, and at the same time receives
both interactive and non-interactive requests from
users. A request type matching scheme will check
whether this request should enqueue in Qr (for
interactive workloads) or in Ql (for non-interac-
tive workloads), with source (s), destination (d),
and function (f). For each queue, the latency esti-
mating algorithm pre-calculates the overall laten-
cy of these requests. If the estimated latency for
interactive workloads exceeds user patience, the
resource adjustment module would allocate the
more resources to the interactive queue Qr and
update the request processing module. Then the
processing speed of interactive workloads is thus
promoted. This process executes in real-time auto-
matically.

In the latency estimation algorithm, when a
request with 〈s, d, f〉 enters a queue, we update
the queue information and record the arriving

FIGURE 2. The workload latency in Baidu networks.

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 24:00
0

100

200

300

400

500

600

La
te

nc
y

(m
s)

Interactive
Non-interactive

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:06:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2018 141

time. Once a request begins to be served, we
record the beginning time and the queueing
time. If this request is an interactive one, it will
be transmitted to the next service. If this request
is a non-interactive one, we can get the finish
time directly, which is calculated by summing the
beginning time and the service time. Thus, we can
calculate the overall estimated latency.

In the feedback scheme, we formulate the arrival
rate of workloads, the server’s serving rate and the
user’s abandon rate before using the Markov chain
to model the two queues. After calculating queue
length and the expected waiting time, we equalize
workload latencies by adjusting the resource allo-
cation. The detailed adjustment description will be
introduced in the next subsection.

Overall, D3G converts the performance opti-
mization problem into a resource allocation
problem. By estimating latencies of different net-
work services, D3G mitigates the imbalance by
adjusting the allocated resources. The real time
estimation algorithm and the intelligent feedback
scheme make D3G work efficiently and automat-
ically.

Adjusting Resource Allocation
To calculate the resources allocated to inter-

active workloads and non-interactive workloads,
we model the queuing problem in the adjusting
scheme. To analyze the arrival and leaving rates
of requests, we adopt a Markov model to rep-
resent state transmissions of the two queues. By
modeling different distributions on service time
and abandon rate, we can calculate the laten-
cy expectation of various workloads. Finally, the
feedback scheme could adjust resource allocation
to ensure fairness.

The arrival process of requests is a dis-
crete-time random process, and the number of
requests in the future is only related to the num-
ber at present, i.e., the queue can be formulated
by a Markov chain, and the queue length can be
calculated. For any specific server, when a request
arrives, the queue length increases by 1; when a
request abandons the queue or a service is fin-
ished, the queue length decreases by 1. Thus,
with the arrival rate, service time and abandoning
rate, we can model the queues in any particular
servers as M/M/1 queues [14] and determine the
queue length. As described before, the service
time is in an exponent distribution, and each ser-
vice is mutually independent from each other, so
the waiting time of a request is a convolution. So
far, the expectation of waiting time on one server
can be calculated.

Recall that interactive requests will be pend-
ing in queues for multiple times in different serv-
ers, and non-interactive requests only need to be
pending once. This may lead to intolerable laten-
cy for delay-sensitive workloads. We solve this
problem by adjusting resource allocations. With
the expected waiting time, we assume the trans-
fer time on a server is in a Gaussian distribution
[15], and then make the overall latency of the two
queues equal to each other. Thus, we can work
out the allocation rates to the interactive work-
loads and non-interactive workloads. With this
adjusted allocation, interactive workloads from
delay-sensitive applications can enjoy reduced
latency that is within user tolerance.

Deployment
We implement D3G in the servers of Baidu net-
works, and the algorithm is written in C language.
The servers use the Linux operating system and
are configured with tomcat webservers based
on Java. We choose four servers that are config-
ured with 4 GB of memory, two cores, and 100
Mb/s public network bandwidth. As to the clients,
there are 36 end-hosts and each is configured
with an Intel i5 1.7 GHz CPU and 2 GB of mem-
ory. All these end-hosts are constantly sending
either interactive or non-interactive requests to
those servers. The interactive workloads need to
be served in each server, and the non-interactive
workloads can be processed by only one server.
We conduct a series of experiments in the next
section:
•	 Overall performance: we conduct a series

of experiments, measuring the average
response time of both interactive and non-in-
teractive workloads under D3G versus the
state-of-the-art scheme without D3G.

•	 Algorithm dynamism: we test the algorithm’s
performance under a dynamic scenario.

•	 System scalability: we evaluate the optimiza-
tion of D3G under expanding scales.

Evaluation
As described in the deployment section, we con-
duct three groups of experiments to test the algo-
rithm’s efficiency and evaluate average response
time and service performance under different net-
work environments. Recall the example given in a
previous section that the interactive workloads are
actually suffering from seven times longer latency
compared to non-interactive workloads.

The experiment results in this section show that
D3G significantly reduces latency for time-sensi-
tive workloads. At the same time, non-interactive
workloads are not affected seriously and are still
enjoying shorter latencies. Besides verifying the
effectiveness of D3G algorithm, we also prove the
potential practicability for large-scale deployment.

Overall Performance
In this subsection, we design several groups of
experiments to evaluate the performance of D3G
under different network environments. We start
the experiment in a 9-to-1 model. In this case,

FIGURE 3. The framework of the D3G scheme.

Latency
estimation

Resource
adjustment

Request
processing

Type
matching

Qr

Ql

Server 2

Feedback

Users

Server 3Server 1

Interactive workloads

Allocation

Non-interactive workloads

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:06:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2018142

every nine end-hosts keep sending interactive and
non-interactive requests to one server. We record
the response time of different workloads under
different scenarios.

For small requests, we set the workload length
from 100 KB to 200 KB, conduct the experiments
200 times, and calculate the average response time
per 20 experiments with upper and lower error
bars. Figure 4a shows the response time of both
interactive and non-interactive requests before
deploying D3G; Fig. 4b shows the response time
after deploying D3G. These figures show that D3G
can significantly reduce the response time of inter-
active workloads (from 110 ms to 95 ms on aver-
age), and the latency for non-interactive workloads
is not seriously affected (from 60 ms to 75 ms).

For large requests, we set the workload length
to at least 200 KB. Figure 4c shows the results
without D3G, from which we can observe that the
average latency for interactive workloads is about
120 ms and that for non-interactive workloads is
about 75 ms, indicating that interactive requests
are suffering from 1.6 times longer latency than
non-interactive requests. Figure 4d shows the opti-
mized results after deploying D3G, where interac-
tive workload latency is reduced by 33 percent
(to 80 ms) on average with minimal impact on
non-interactive workload latency.

From these results, we can conclude that D3G
works well in accelerating interactive workloads
under various circumstances.

Algorithm Dynamism
To evaluate our algorithm in dynamic scenarios,
we simulate a dynamic situation to verify the real-
time efficiency of D3G.

We send only non-interactive requests in the
previous 60 s, and then begin to send interactive
requests at the 60th s and stop sending at the
130th s. Figure 5a shows the average delay of this
dynamic process. Latency is quite long for a short
period of time (from 60 s to 70 s). Then it begins
to drop because more resources are allocated
to the interactive queue. When interactive work-
loads stop at the 130th s, non-interactive work-
load latency drops.

From these experiments, we can conclude that
D3G accelerates interactive workloads while not
seriously affecting non-interactive workloads.

System Scalability
Finally, we extend the experiment scales and
increase concurrency to test the algorithm’s
scalability. We speed up the request sending

rate, and Fig. 5b shows the average latency on
various scales. When there are 50 concurrent
requests, the average latency is about 65 ms for
non-interactive workloads and 80 ms for inter-
active ones. When the number of concurrent
requests increases to 500, the average laten-
cies are about 150 ms and 170 ms, respective-
ly. These results indicate that our algorithm is
extensible in large-scale systems. Furthermore, if
the interactive workloads are handled by more
cloud servers, the latency without D3G will
become even higher (as shown in the case in
the previous section), and our algorithm optimi-
zation will be more obvious.

From the above deployment and evaluations,
we can conclude that D3G successfully reduces
the latency of interactive workloads to a reason-
able range with no distinct impact on non-inter-
active workloads, even in expanding scales. We
believe that the main idea of D3G, to reduce
latency of interactive workloads from time-sensi-
tive applications, will soon be adopted by current
microservices.

Conclusion
For cloud-based service chains, we measure and
analyze their performance in Baidu networks, and
the results show that these delay-sensitive micro-
service-like applications are suffering from long
latency due to the extra delay from the multiple
stand-alone components.

In this article, we propose a new algorithm
called Dynamic Differentiated service for
Delay-Guarantee (D3G), which aims at reduc-
ing the overall latency for chained applications
while ensuring workload fairness. To this end,
we design two queues in servers. One is for
interactive requests, and the other is for non-in-
teractive requests. To make the latency within
user tolerance, the latency estimation algorithm
pre-calculates interaction latency. Furthermore,
to guarantee fairness, we introduce a feedback
control scheme based on resource allocation
to ensure the performance of non-interactive
workloads. A wide range of detailed evaluation
results demonstrate that D3G succeeds in accel-
erating chained services and ensuring work-
load fairness. As microservice-like applications
have many obvious advantages such as clean
boundaries, better system scalability and lower
operating costs, they are attracting increasing
attention. We believe that D3G will further
reveal its effectiveness along with the develop-
ment of service chains.

FIGURE 4. Average response time of both interactive and non-interactive workloads: a) latency without D3G when requests are (100KB,
200KB]; b) latency with D3G when requests are (100KB, 200KB]; c) latency without D3G when requests are 200KB and above;
d) latency with D3G when requests are 200KB and above.

2

(a) (b) (c) (d)

4 6 8 10

20
40
60
80

100
120
140
160
180
200

Experiment #

Re
sp

on
se

 ti
m

e
(m

s)

Interactive
Non-interactive

2 4 6 8 10

20
40
60
80

100
120
140
160
180
200

Experiment #

Re
sp

on
se

 ti
m

e
(m

s)

2 4 6 8 10

20
40
60
80

100
120
140
160
180
200

Experiment #

Re
sp

on
se

 ti
m

e
(m

s)

2 4 6 8 10

20
40
60
80

100
120
140
160
180
200

Experiment #

Re
sp

on
se

 ti
m

e
(m

s)

Interactive
Non-interactive

Interactive
Non-interactive

Interactive
Non-interactive

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:06:55 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2018 143

Acknowledgment
This work was supported by the National Natural
Foundation of China (61472212 and 61572278),
EU Marie Curie Actions CROWN (FP7-PEOPLE-
2013-IRSES-610524), the National Key R&D Pro-
gram of China (2016YFB0800102), and the R&D
Program of Shenzhen (JCYJ20170307153259323).

References
[1] Y. Guo et al., “Energy and Network Aware Workload Man-

agement for Sustainable Data Centers with Thermal Stor-
age,” IEEE Trans. Parallel and Distributed Systems, 2014, vol.
25, no. 8, pp. 2030–42.

[2] M. Alizadeh et al., “pfabric: Minimal Near-Optimal Datacen-
ter Transport,” ACM SIGCOMM Computer Communication
Review, ACM, 2013, vol. 43, no. 4, pp. 435–46.

[3] F. R. Dogar et al., “Decentralized Task-Aware Scheduling for
Data Center Networks,” ACM SIGCOMM Computer Com-
munication Review, ACM, 2014, vol. 44, no. 4, pp. 431–42.

[4] Y. Zhang et al., “Towards Shorter Task Completion Time in
Datacenter Networks,” Proc. 34th IEEE Int’l. Conf. Comput-
ing and Communications, IEEE, 2015, pp. 1–8.

[5] M. Mauve et al., “Local-Lag and Timewarp: Providing Con-
sistency for Replicated Continuous Applications,” IEEE Trans.
Multimedia, 2004, vol. 6, no. 1, pp. 47–57.

[6] S. D. Webb, S. Soh, and W. Lau, “Enhanced Mirrored Servers for
Network Games,” Proc. 6th ACM SIGCOMM workshop on Net-
work and System Support for Games, ACM, 2007, pp. 117–22.

[7] K. H. Vik, P. Halvorsen, and C. Griwodz, “Multicast Tree
Diameter for Dynamic Distributed Interactive Applications,
Proc. 27th IEEE Conf. Computer Commun., INFOCOM 2008,
IEEE, 2008, pp. 1597–1605.

[8] J. Guo et al., “A Cooperative Game Based Allocation for
Sharing Data Center Networks, Proc. IEEE 2013 INFOCOM,
IEEE, 2013, pp. 2139–47.

[9] K. Xu et al., “Online Combinatorial Double Auction
for Mobile Cloud Computing Markets,” Proc. 2017 IEEE
Int’l. Performance Computing and Communications Conf.
(IPCCC), IEEE, 2014, pp. 1–8.

[10] Y. Zaki et al., “Dissecting Web Latency in Ghana,” Proc.
2014 Conf. Internet Measurement, ACM, 2014, pp. 241–48.

[11] E. Pujol et al., “Back-Office Web Traffic on the internet,”
Proc. 2014 Conf. Internet Measurement, ACM, 2014, pp.
257–70.

[12] H. Wang et al., “On Design and Performance of Cloud-Based
Distributed Interactive Applications,” Proc. 2014 22nd IEEE Int’l.
Conf. Network Protocols (ICNP), IEEE, 2014, pp. 37–46.

[13] J. Carlstrom and R. Rom, “Application-Aware Admission
Control and Scheduling In Web Servers,” Proc. INFOCOM
2002, Twenty-First Annual Joint Conf. IEEE Computer and
Communications Societies, IEEE, 2002, 2, pp. 506–515.

[14] M. Mitzenmache, “The Power of Two Choices in Random-
ized Load Balancing,” IEEE Trans. Parallel and Distributed
Systems, 2001, vol. 12, no. 10, pp. 1094–1104.

[15] E. Pebesma et al., “INTAMAP: The Design and Implemen-
tation of an Interoperable Automated Interpolation Web
Service,” Computers & Geosciences, 2011, vol. 37, no. 3,
pp. 343–52.

Biographies
Yuchao Zhang received the Bachelor of Science degree in
computer science and technology from Jilin University, China in
2012., and her Ph.D. degree from the Department of Computer
Science & Technology of Tsinghua University, Beijing, China
in 2017. Currently she works at Beijing University of Posts and
Telecommunications. Her research interests include cloud com-
puting, large-scale datacenter networks, high-speed networks
and network function virtualization.

Ke Xu [M’02, SM’09] received his Ph.D. from the Department of
Computer Science & Technology of Tsinghua University, Beijing,
China, where he serves as a full professor. He has published
more than 100 technical papers and holds 20 patents in the
research areas of next generation Internet, P2P systems, Internet
of Things (IoT), and network virtualization and optimization. He
is a member of ACM and has guest-edited several special issues
in IEEE and Springer journals. Currently, he is holding a visiting
professor position at the University of Essex.

Haiyang Wang is an assistant professor in the Department of
Computer Science at the University of Minnesota Duluth, USA.
His research interests include cloud computing, peer-to-peer
networking, social networking, big data and multimedia com-
munications.

Qi Li [M’12] received the B.Sc. and Ph.D. degrees in computer
science from Tsinghua University, Beijing, China, in 2003 and
2012, respectively. His research interests include network archi-
tecture, protocol design, and system and network security.

Tong Li received his B.S. degree from the Department of Com-
puter Science of Wuhan University, Hubei, China in 2012, and
his Ph.D. degree from the Department of Computer Science &
Technology of Tsinghua University in 2017. Currently he works
at Huawei Company. His research interests include network
virtualization and resource management, network science, and
P2P systems.

Xuan Cao received his B.S. and Master degrees from the
Department of Computer Science of Nanjing University of Sci-
ence and Technology in 2008 and 2011, respectively. He has
been with Beijing Baidu Netcom Science Technology Co., Ltd.
since then. His research interests include resource manage-
ment, network virtualization, pattern recognition and intelligent
systems.

FIGURE 5. Performance for different parameters: a) average delay for dynamic scenario; b) average delay for
different scales.

50

(a) (b)

100 150 200
0

50

100

150

200

Time (s)

Av
er

ag
e

lat
en

cy
 (m

s)

Interactive
Non−interactive

50 100 300 500
0

50

100

150

200

Number of requests

Av
er

ag
e

de
lay

Non−interactive
Interactive

Authorized licensed use limited to: Huawei Technologies Co Ltd. Downloaded on April 25,2021 at 02:06:55 UTC from IEEE Xplore. Restrictions apply.

