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Abstract
State-of-the-art microservices have been attract-

ing more attention in recent years. A broad spec-
trum of online interactive applications are now 
programmed to service chains on the cloud, seeking 
better system scalability and lower operating costs. 
Different from the conventional batch jobs, most 
of these applications consist of multiple stand-alone 
services that communicate with each other. These 
step-by-step operations unavoidably introduce high-
er latency to the delay-sensitive chained services.

In this article, we aim at designing an opti-
mization approach for reducing the latency of 
chained services. Specifically, presenting the 
measurement and analysis of chained services 
on Baidu’s cloud platform, our real-world trace 
indicates that these chained services are suf-
fering from significantly high latency because 
they are mostly handled by different queues on 
cloud servers for multiple times. However, such 
a unique feature introduces significant challeng-
es to optimize a microservice’s overall queue-
ing delay. To address this problem, we propose 
a delay-guaranteed approach to accelerate 
the overall queueing of chained services while 
obtaining fairness across all the workloads. Our 
evaluations on Baidu servers shows that the pro-
posed design can successfully reduce the latency 
of chained services by 35 percent with minimal 
impact on other workloads.

Introduction
The rapid growth of service chains is changing 
the landscape of cloud-based applications. Dif-
ferent stand-alone components are now handled 
by cloud servers, providing cost efficient and reli-
able services to Internet users. It is known that 
the workloads from service chains are more com-
plex than the traditional non-interactive (or batch) 
workloads [1]. Non-interactive workloads are the 
workloads that can be processed on only one 
specific server and do not need interactions with 
other servers (such as scientific computing and 
image processing). Being not strictly time-sensi-
tive, these workloads can be scheduled to run 
anytime as long as they can be finished before 
a soft deadline, while interactive workloads from 
service chains are the workloads that have to go 
through multiple servers to apply different func-
tions (such as business transactional and complex 
gaming control), and these chained services typ-
ically process real-time user requests. However, 
the interactions unavoidably introduce addition-

al latency, making the performance for service 
chains in urgent need to be ensured.

We then measure the interactive workloads per-
formance on Baidu’s cloud platform. The real-world 
traces indicate that interactive workloads are real-
ly suffering from significantly longer latency than 
non-interactive workloads. The measured case is 
shown in Fig. 1a, where Nuomi is a group buying 
application, Waimai is a take-out service, and Ali-
pay is an online payment platform. When a user 
clicks an item on Nuomi, the latency is quite short 
because this query does not require many inter-
actions among services. However, the story will 
be different when this user orders a take-out and 
purchases the item. In this case, the request goes 
through Nuomi, Waimai, and then Alipay. In other 
words, this interactive workload consists of several 
highly-dependent operations that have to be pro-
cessed on different servers separately. As shown 
in Fig. 1b, there are six procedures for interactive 
workloads and only two procedures for non-inter-
active workloads. It is easy to see that such interac-
tive workloads in chained applications will introduce 
extra latency to users because these requests will be 
handled by different services for multiple times.

Unfortunately, we find that most existing 
workload scheduling approaches are designed to 
re-schedule [2] and leverage different priorities 
[3, 4] on individual queues. In other words, these 
optimizations are made on intermediate servers 
separately, so the overall latency of interactive 
workloads is still unpredictable. To better optimize 
the overall latency of chained services, we apply 
a latency estimation approach to predict overall 
latency and try to accelerate the interactive work-
loads. Furthermore, we design a feedback scheme 
to ensure workload fairness and avoid remarkable 
degradation of non-interactive workloads. Our 
real-world deployments on Baidu indicate that the 
proposed Delay-Guarantee (D3G) framework can 
successfully reduce the latency of interactive appli-
cations with minimal impact on other workloads.

The main contributions of this article are sum-
marized as follows:
•	 We present a measurement and latency analy-

sis of service chains in Baidu networks and dis-
close the long latency of interactive workloads.

•	 We design the D3G algorithm to accelerate 
interactive workloads in a global manner 
other than in each independent server, and 
leverage a latency estimation algorithm and 
a feedback scheme to ensure fairness.

•	 We evaluate our methods on servers in 
Baidu networks, and the extensive experi-
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ment results show that D3G succeeds in 
accelerating interactive chained applications 
while ensuring workload fairness.

Background
As more applications are deployed on clouds 
for better system scalability and lower operat-
ing costs, service chains are developing quickly. 
Many studies have shown that latency is particu-
larly problematic when interaction latency occurs 
together with network delays [5]. In this section, 
we will first introduce the related work about 
service chains and interactive applications, and 
then present the measurements from a real-world 
trace, which motivates this article.

Related Work
To optimize cloud-based applications, many 
researchers focused on minimizing latency, which 
do advance the state-of-art. We classify this lit-
eratures into two categories. First, some literature 
focused on network processing latency. For exam-
ple, Webb et al. [6] proposed a nearest server 
assignment to reduce client-server latency. Vik [7] 
explored the spanning tree problems in a distributed 
interactive application system for latency reduction. 
The authors in [8] and [9] introduced game theory 
into this topic and modeled the latency problem in 
datacenters as a bargaining game. Second, some 
research aims at reducing service latency. Web 
service is the most related, which is an effective 
mechanism for data and service integration on the 
Web. Some studies succeeded in dissecting latency 
contributors [10], showing that back-office traffic 
accounts for a significant fraction of Web transac-
tion latency in terms of requests and responses [11].

The above studies handle different compo-
nents of overall latency, but they ignore the effects 
brought by service chains, e.g., the case in Fig. 1. 
When service 1 receives an interactive request 
(TCP:0) that cannot be served in service 1 (i.e., this 
request requires data from services 2 and 3), then 
service 1 will make a new TCP connection (TCP:1) 
to service 2, and the original connection (TCP:0) 
would be hung up. In the same way, service 2 will 
make a new TCP connection (TCP:2) to service 3. 
When service 2 receives the corresponding results 
from service 3, the TCP:2 connection would be 
released and the TCP:1 connection recovered. 
After service 2 sends the results back to service 1, 
TCP:1 connection would be released and the orig-
inal TCP:0 connection recovered. Thus, the inter-
active workloads are suffering from longer latency 
due to the interactions among multiple interme-
diate servers. Many researchers investigated the 
latency for these applications, and their research 
showed that although these applications are quite 
delay-sensitive, service performance is greatly 
affected by interactions. To address this problem, 
some studies suggested that the interactions of dif-
ferent services should be further dissected to better 
understand the performance implications [11], and 
some researchers have already begun to pay atten-
tion to interaction latency [12].

Our study explores the potential to reduce the 
response time for service chains and guarantee the 
non-interactive workloads simultaneously. In particular, 
we accelerate the interactive workloads by building 
a new dedicated queue and trying to adjust resource 
allocation among different  queues. By leveraging a 

feedback scheme, we can bound the influence on 
non-interactive workloads. We’ll describe the algorithm 
in detail after introducing our motivation below.

Measurement and Motivation
In this section, we conduct measurements in Baidu 
networks and disclose the long latency of chained 
services. This article was motivated by the goal to 
accelerat interactive workloads while not affecting 
non-interactive workloads (to ensure fairness).

As the largest Chinese search engine, Baidu 
has dozens of applications deployed in its net-
works. These applications cover every corner of 
people’s lives, and they can further cooperate 
with each other to provide more comprehensive 
functions (as shown in the introduction section).

To evaluate the performance of these services, 
we measured the workload latency from one serv-
er cluster at Baidu. In particular, we monitor all 
the workloads, record the response time of ser-
vice calls, and then calculate the average latency 
per minute of both interactive and non-interactive 
workloads by analyzing the trace log. We grab 
the log of these two kinds of workloads from 0:00 
to 24:00 on April 7, 2016, and draw the statisti-
cal figures in Fig. 2. The x-coordinate denotes the 
time in one day while the y-coordinate denotes 
the service latency in ms. From these results, we 
come to the following conclusions:
•	 The average latency of non-interactive work-

loads is about 60 ms to 70 ms, while that of 
the interactive workloads is nearly 500 ms, 
that is, the interactive workloads are suffer-
ing from seven times longer latency com-
pared to the non-interactive workloads.

•	 Even when the network is not congested 
(e.g., during the night), the interactive work-
load latency is still much longer than the 
non-interactive workload latency.

•	 When there is a slight burst, for example, at 
11:00 am or 16:00 pm, the performance for 
interactive workloads is obviously influenced, 
making latency even higher.
As we analyzed before, non-interactive work-

loads can be completed in just one instance while 
the interactive workloads have to go through differ-

FIGURE 1. The processes of interactive and non-interactive workloads.
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ent servers one after another. To optimize the per-
formance of delay-sensitive interactive workloads, 
we should accelerate the processing of these work-
loads, such as assigning higher priorities or allocating 
more resources. However, improving interactive 
workloads will unavoidably affect non-interactive 
workloads because they are sharing the same infra-
structures. Hence a fair optimization scheme should 
have the following two characteristics: reduce laten-
cy for delay-sensitive interactive workloads, and 
ensure fairness across all workloads (not to degrade 
non-interactive workloads severely).

Dynamic Differentiated Service with 
Delay-Guarantee

In this section, we study the essence of the laten-
cy gap before introducing the design philosophy 
of our approach. According to the philosophy, 
we design an algorithm called the Dynamic Dif-
ferentiated service with Delay-Guarantee (D3G), 
which reduces the latency of service chains while 
ensuring workload fairness.

The Components of Latency
As interactive applications consist of basic func-
tions applied on different servers, those workloads 
should go through multiple servers in a specific 
order so that the required functions are applied 
step by step. Therefore, the interactive workloads 
will be queued in servers several times while the 
non-interactive workloads will be queued just once.

To be specific, we analyze the latency of inter-
active Ri,j and non-interactive Ri,i workloads. As 
interactive workloads travel across multiple servers 
and are queued in each one, the final latency is the 
sum of the queuing and serving time on each serv-
er. The transfer time among different servers also 
contributes to latency. Non-interactive workloads 
only go through one particular server with only 
one queuing and serving time. Thus, the overall 
latency of interactive workloads is much longer 
than that of non-interactive workloads (Fig. 2).

Design Philosophy
As the patience of users is limited and they would 
abandon the system once latency exceeds their 
patience, interactive workload latency is essential 
for these delay-sensitive applications. This limit-

ed patience can be formulated as an exponential 
function [13]. Considering that one exponential 
function is not precise enough to model user 
patience, we use a weighted sum of exponential 
functions to calculate user patience in the D3G 
algorithm. With this expected patience, the sys-
tem would have a leaving rate, rephrased as fol-
lows: when overall latency exceeds user patience, 
users will abandon the system, and this leads to 
an abandoning rate of waiting queues.

To ensure constant service and prevent 
users from abandoning the system, interactive 
workloads should be scheduled within user 
tolerance. To do so, we do re-scheduling and 
resource adjustment in this work. Specifically, 
we separate interactive workloads from non-in-
teractive workloads and make them pending in 
different queues. We leverage two queues in 
each server. Ql represents the queue for non-in-
teractive requests, and Qr represents the queue 
for interactive requests. The two queues share 
the infrastructure and resources in the same 
server. The difficulty in accelerating interactive 
workloads is that allocating more resources to 
Qr will unavoidably affect the process of Ql. 
Thus, how to share the resources on one serv-
er among different workloads becomes a key 
concern.

To address this issue, we design D3G, which 
can adjust resource allocation among different 
kinds of workloads automatically and in real time. 
To make D3G more intelligent, we design an esti-
mation algorithm to pre-calculate the processing 
time on other servers. Furthermore, we also intro-
duce a feedback scheme to reduce the negative 
impact on non-interactive workloads.

D3G Framework
As we described in the previous subsection, 
we separate interactive workloads from non-in-
teractive workloads and make them queued 
independently. We design a latency estima-
tion algorithm, and once the estimated latency 
exceeds user patience, we dynamically adjust the 
resource allocation among queues according to a 
feedback scheme. Thus, the interactive workloads 
will be accelerated in all intermediate servers and 
finally enjoy a latency level that is comparable to 
the non-interactive workloads.

The framework of D3G is shown in Fig. 3. For 
a specific server, it receives interactive workloads 
from other servers, and at the same time receives 
both interactive and non-interactive requests from 
users. A request type matching scheme will check 
whether this request should enqueue in Qr (for 
interactive workloads) or in Ql (for non-interac-
tive workloads), with source (s), destination (d), 
and function (f). For each queue, the latency esti-
mating algorithm pre-calculates the overall laten-
cy of these requests. If the estimated latency for 
interactive workloads exceeds user patience, the 
resource adjustment module would allocate the 
more resources to the interactive queue Qr and 
update the request processing module. Then the 
processing speed of interactive workloads is thus 
promoted. This process executes in real-time auto-
matically.

In the latency estimation algorithm, when a 
request with 〈s, d, f〉 enters a queue, we update 
the queue information and record the arriving 

FIGURE 2. The workload latency in Baidu networks.
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time. Once a request begins to be served, we 
record the beginning time and the queueing 
time. If this request is an interactive one, it will 
be transmitted to the next service. If this request 
is a non-interactive one, we can get the finish 
time directly, which is calculated by summing the 
beginning time and the service time. Thus, we can 
calculate the overall estimated latency.

In the feedback scheme, we formulate the arrival 
rate of workloads, the server’s serving rate and the 
user’s abandon rate before using the Markov chain 
to model the two queues. After calculating queue 
length and the expected waiting time, we equalize 
workload latencies by adjusting the resource allo-
cation. The detailed adjustment description will be 
introduced in the next subsection.

Overall, D3G converts the performance opti-
mization problem into a resource allocation 
problem. By estimating latencies of different net-
work services, D3G mitigates the imbalance by 
adjusting the allocated resources. The real time 
estimation algorithm and the intelligent feedback 
scheme make D3G work efficiently and automat-
ically.

Adjusting Resource Allocation
To calculate the resources allocated to inter-

active workloads and non-interactive workloads, 
we model the queuing problem in the adjusting 
scheme. To analyze the arrival and leaving rates 
of requests, we adopt a Markov model to rep-
resent state transmissions of the two queues. By 
modeling different distributions on service time 
and abandon rate, we can calculate the laten-
cy expectation of various workloads. Finally, the 
feedback scheme could adjust resource allocation 
to ensure fairness.

The arrival process of requests is a dis-
crete-time random process, and the number of 
requests in the future is only related to the num-
ber at present, i.e., the queue can be formulated 
by a Markov chain, and the queue length can be 
calculated. For any specific server, when a request 
arrives, the queue length increases by 1; when a 
request abandons the queue or a service is fin-
ished, the queue length decreases by 1. Thus, 
with the arrival rate, service time and abandoning 
rate, we can model the queues in any particular 
servers as M/M/1 queues [14] and determine the 
queue length. As described before, the service 
time is in an exponent distribution, and each ser-
vice is mutually independent from each other, so 
the waiting time of a request is a convolution. So 
far, the expectation of waiting time on one server 
can be calculated.

Recall that interactive requests will be pend-
ing in queues for multiple times in different serv-
ers, and non-interactive requests only need to be 
pending once. This may lead to intolerable laten-
cy for delay-sensitive workloads. We solve this 
problem by adjusting resource allocations. With 
the expected waiting time, we assume the trans-
fer time on a server is in a Gaussian distribution 
[15], and then make the overall latency of the two 
queues equal to each other. Thus, we can work 
out the allocation rates to the interactive work-
loads and non-interactive workloads. With this 
adjusted allocation, interactive workloads from 
delay-sensitive applications can enjoy reduced 
latency that is within user tolerance.

Deployment
We implement D3G in the servers of Baidu net-
works, and the algorithm is written in C language. 
The servers use the Linux operating system and 
are configured with tomcat webservers based 
on Java. We choose four servers that are config-
ured with 4 GB of memory, two cores, and 100 
Mb/s public network bandwidth. As to the clients, 
there are 36 end-hosts and each is configured 
with an Intel i5 1.7 GHz CPU and 2 GB of mem-
ory. All these end-hosts are constantly sending 
either interactive or non-interactive requests to 
those servers. The interactive workloads need to 
be served in each server, and the non-interactive 
workloads can be processed by only one server. 
We conduct a series of experiments in the next 
section: 
•	 Overall performance: we conduct a series 

of experiments, measuring the average 
response time of both interactive and non-in-
teractive workloads under D3G versus the 
state-of-the-art scheme without D3G. 

•	 Algorithm dynamism: we test the algorithm’s 
performance under a dynamic scenario.

•	 System scalability: we evaluate the optimiza-
tion of D3G under expanding scales.

Evaluation
As described in the deployment section, we con-
duct three groups of experiments to test the algo-
rithm’s efficiency and evaluate average response 
time and service performance under different net-
work environments. Recall the example given in a 
previous section that the interactive workloads are 
actually suffering from seven times longer latency 
compared to non-interactive workloads.

The experiment results in this section show that 
D3G significantly reduces latency for time-sensi-
tive workloads. At the same time, non-interactive 
workloads are not affected seriously and are still 
enjoying shorter latencies. Besides verifying the 
effectiveness of D3G algorithm, we also prove the 
potential practicability for large-scale deployment.

Overall Performance
In this subsection, we design several groups of 
experiments to evaluate the performance of D3G 
under different network environments. We start 
the experiment in a 9-to-1 model. In this case, 

FIGURE 3. The framework of the D3G scheme.
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every nine end-hosts keep sending interactive and 
non-interactive requests to one server. We record 
the response time of different workloads under 
different scenarios.

For small requests, we set the workload length 
from 100 KB to 200 KB, conduct the experiments 
200 times, and calculate the average response time 
per 20 experiments with upper and lower error 
bars. Figure 4a shows the response time of both 
interactive and non-interactive requests before 
deploying D3G; Fig. 4b shows the response time 
after deploying D3G. These figures show that D3G 
can significantly reduce the response time of inter-
active workloads (from 110 ms to 95 ms on aver-
age), and the latency for non-interactive workloads 
is not seriously affected (from 60 ms to 75 ms).

For large requests, we set the workload length 
to at least 200 KB. Figure 4c shows the results 
without D3G, from which we can observe that the 
average latency for interactive workloads is about 
120 ms and that for non-interactive workloads is 
about 75 ms, indicating that interactive requests 
are suffering from 1.6 times longer latency than 
non-interactive requests. Figure 4d shows the opti-
mized results after deploying D3G, where interac-
tive workload latency is reduced by 33 percent 
(to 80 ms) on average with minimal impact on 
non-interactive workload latency.

From these results, we can conclude that D3G 
works well in accelerating interactive workloads 
under various circumstances.

Algorithm Dynamism
To evaluate our algorithm in dynamic scenarios, 
we simulate a dynamic situation to verify the real-
time efficiency of D3G.

We send only non-interactive requests in the 
previous 60 s, and then begin to send interactive 
requests at the 60th s and stop sending at the 
130th s. Figure 5a shows the average delay of this 
dynamic process. Latency is quite long for a short 
period of time (from 60 s to 70 s). Then it begins 
to drop because more resources are allocated 
to the interactive queue. When interactive work-
loads stop at the 130th s, non-interactive work-
load latency drops.

From these experiments, we can conclude that 
D3G accelerates interactive workloads while not 
seriously affecting non-interactive workloads.

System Scalability
Finally, we extend the experiment scales and 
increase concurrency to test the algorithm’s 
scalability. We speed up the request sending 

rate, and Fig. 5b shows the average latency on 
various scales. When there are 50 concurrent 
requests, the average latency is about 65 ms for 
non-interactive workloads and 80 ms for inter-
active ones. When the number of concurrent 
requests increases to 500, the average laten-
cies are about 150 ms and 170 ms, respective-
ly. These results indicate that our algorithm is 
extensible in large-scale systems. Furthermore, if 
the interactive workloads are handled by more 
cloud servers, the latency without D3G will 
become even higher (as shown in the case in 
the previous section), and our algorithm optimi-
zation will be more obvious.

From the above deployment and evaluations, 
we can conclude that D3G successfully reduces 
the latency of interactive workloads to a reason-
able range with no distinct impact on non-inter-
active workloads, even in expanding scales. We 
believe that the main idea of D3G, to reduce 
latency of interactive workloads from time-sensi-
tive applications, will soon be adopted by current 
microservices.

Conclusion
For cloud-based service chains, we measure and 
analyze their performance in Baidu networks, and 
the results show that these delay-sensitive micro-
service-like applications are suffering from long 
latency due to the extra delay from the multiple 
stand-alone components.

In this article, we propose a new algorithm 
called Dynamic Differentiated service for 
Delay-Guarantee (D3G), which aims at reduc-
ing the overall latency for chained applications 
while ensuring workload fairness. To this end, 
we design two queues in servers. One is for 
interactive requests, and the other is for non-in-
teractive requests. To make the latency within 
user tolerance, the latency estimation algorithm 
pre-calculates interaction latency. Furthermore, 
to guarantee fairness, we introduce a feedback 
control scheme based on resource allocation 
to ensure the performance of non-interactive 
workloads. A wide range of detailed evaluation 
results demonstrate that D3G succeeds in accel-
erating chained services and ensuring work-
load fairness. As microservice-like applications 
have many obvious advantages such as clean 
boundaries, better system scalability and lower 
operating costs, they are attracting increasing 
attention. We believe that D3G will further 
reveal its effectiveness along with the develop-
ment of service chains.

FIGURE 4. Average response time of both interactive and non-interactive workloads: a) latency without D3G when requests are (100KB, 
200KB]; b) latency with D3G when requests are (100KB, 200KB]; c) latency without D3G when requests are 200KB and above;  
d) latency with D3G when requests are 200KB and above.
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FIGURE 5. Performance for different parameters: a) average delay for dynamic scenario; b) average delay for 
different scales.
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